Exercises on the Polynomial Hierarchy PH CSCI 6114 Fall 2021

Joshua A. Grochow

September 2, 2021

Definition 1. We use \exists^{p}, \forall^{p} to denote the polynomially-bounded version of these quantifiers.

For example, we can (re)define NP as the class of languages L such that there is a polynomial-time verifier V, and for all x,

$$
\begin{aligned}
x \in L & \Longleftrightarrow\left(\exists^{p} y\right)[V(x, y)=1] \\
& \Longleftrightarrow(\exists y)[|y| \leq \operatorname{poly}(|x|) \text { and } V(x, y)=1]
\end{aligned}
$$

Definition 2. 1. A language L is in $\Sigma_{k} \mathrm{P}(k \geq 0)$ if there is a polynomialtime verifier V such that, for all x,

$$
x \in L \Longleftrightarrow\left(\exists^{p} y_{1}\right)\left(\forall^{p} y_{2}\right) \cdots\left(\exists^{p} / \forall^{p} y_{k}\right) V\left(x, y_{1}, y_{2}, \ldots, y_{k}\right)=1 .
$$

where the final quantifier is \exists^{p} if k is odd and \forall^{p} if k is even.
2. We similarly define $\Pi_{k} \mathrm{P}$ except where the right-hand side starts with $\forall^{p} y_{1}$ (and then alternate).
3. Finally, we define $\mathrm{PH}=\bigcup_{k \geq 0} \Sigma_{k} \mathrm{P}$.

Exercises

1. Show that $\mathrm{P}=\Sigma_{0} \mathrm{P}=\Pi_{0} \mathrm{P}$ and $\mathrm{NP}=\Sigma_{1} \mathrm{P}$.
2. (a) Show that $\mathrm{PH} \subseteq \mathrm{EXP}$, where EXP is the class of decision problems that can be decided by a Turing machine that runs in time $2^{\text {poly }(n)}$.
(b) Show that $\mathrm{PH} \subseteq$ PSPACE, where PSPACE is the class of decision problems that can be decided by a Turing machine that uses an amount of space that is $\operatorname{poly}(n)$ (with no a priori upper bound on its runtime).
3. Show that $\Sigma_{k} \mathrm{P}=\operatorname{co}_{\mathrm{k}} \mathrm{P}$. That is, $L \in \Sigma_{\mathrm{k}} \mathrm{P}$ iff $\bar{L} \in \Pi_{k} \mathrm{P}$ (\bar{L} is our notation for the complement language, $\left.\bar{L}:=\Sigma^{*} \backslash L=\left\{x \in \Sigma^{*} \mid x \notin L\right\}\right)$. If this feels too abstract, start with $k=1$.
4. Is NP $=$ coNP? This is a hard problem. Try to convince each other one way or the other.
5. Show that $\Sigma_{k} \mathrm{P} \subseteq \Sigma_{k+1} \mathrm{P} \cap \Pi_{k+1} \mathrm{P}$. Conclude that (a) $\Sigma_{k} \mathrm{P} \cup \Pi_{k} \mathrm{P} \subseteq$ $\Sigma_{\mathrm{k}+1} \mathrm{P} \cap \Pi_{\mathrm{k}+1} \mathrm{P}$, (b) $\mathrm{PH}=\bigcup_{k \geq 0} \Pi_{\mathrm{k}} \mathrm{P}$.
6. (a) Show that a language L is in NP iff there exists a poly-time verifier V such that for all x,

$$
x \in L \Longleftrightarrow\left(\exists^{p} y_{1}\right)\left(\exists^{p} y_{2}\right) V\left(x, y_{1}, y_{2}\right)=1 .
$$

(b) Show that it is only the number of quantifier alternations that matter, and not the total number of quantifiers in the definition of $\Sigma_{k} P$. More specifically, if in the definition of $\Sigma_{k} P$ we allow a block of \exists^{p} quantifier or a block of \forall^{p} quantifiers in place of any one of the $\exists^{p} / \forall^{p}$ quantifiers in the definition above, we get back the same class.

Definition 3. If $\mathrm{PH}=\Sigma_{k} \mathrm{P}$ for some fixed k, we say that PH collapses (to the k-th level), and otherwise that PH is infinite. (Note the latter is a slight abuse of terminology since PH always contains infinitely many langauges.)
7. (a) Show that if there exists $k \geq 0$ such that $\Sigma_{k} \mathrm{P}=\Pi_{k} \mathrm{P}$ then $\mathrm{PH}=$ $\Sigma_{\mathrm{k}} \mathrm{P}$. Hint: Use the previous problem.
(b) Show that if there exists a $k \geq 0$ such that $\Sigma_{k} \mathrm{P}=\Sigma_{\mathrm{k}+1} \mathrm{P}$, then $\mathrm{PH}=\Sigma_{k} \mathrm{P}$.
(c) Show that if PH has a complete problem, then PH collapses.
8. We define the decision problem $\Sigma_{k} C I R C U I T-S A T$ as follows:
Σ_{k} CIRCUIT-SAT

Input: A Boolean circuit $\varphi\left(x_{1}, \ldots, x_{m}\right)$, together with a partition of $\{1, \ldots, m\}$ into k subsets S_{1}, \ldots, S_{k}.
Decide: It is the case that $\exists \vec{y} \forall \vec{z} \cdots(\exists / \forall \vec{w}) \varphi(\vec{y}, \vec{z}, \ldots, \vec{w})=$ 1 , where $\vec{y}=\left.\vec{x}\right|_{S_{1}}, \vec{z}=\left.\vec{x}\right|_{S_{2}}, \ldots, \vec{w}=\left.\vec{x}\right|_{S_{k}}$, and the final quantifier is \exists if k is odd and \forall if k is even.

Note 1: these are not " \exists^{p} "-style quantifiers, and that each vector $\vec{y}, \vec{z}, \ldots, \vec{w}$ is a vector of Boolean variables. The decision problem is to decide whether the quantified mathematical statement is true or false (note: the question is not satisfiable vs unsatisfiable, since all variables are quantified, but literally a true statement or a false statement).

Note 2: CIRCUIT-SAT is the same as $\Sigma_{1} C I R C U I T-S A T$. (That is, satisfiable unquantified circuits are in essence the same as true statements that are \exists-quantified circuits.)
Question. Show that for any $k \geq 1, \Sigma_{k} C I R C U I T-S A T$ is $\Sigma_{k} \mathrm{P}-$ complete. (It's also true for $k=0$, but for somewhat trivial reasons.) Hint: Use the idea of the proof that $\mathrm{P} \subseteq \mathrm{P} /$ poly from the first set of exercises.
(Foreshadowing: when we get to PSPACE, we will see that a related problem, Totally Quantified Boolean Formulas, or TQBF, is PSPACEcomplete. TQBF is just like $\Sigma_{k} C I R C U I T-S A T$ except that there is no limit placed on how many quantifier alternations there can be.)

Resources

- Defined in Stockmeyer, Theoret. Comp. Sci., 1976
- Arora \& Barak Ch. 5
- Du \& Ko Ch. 3
- Schöning \& Pruim, Gems of TCS, Ch. 16
- Hemaspaandra \& Ogihara, Complexity Theory Companion, Appendix A.4.1
- Homer \& Selman $\S 7.4$ do PH in terms of oracles; we'll see that characterization later, so I'm including it here for future reference, but we haven't gotten to it yet.

