Exercises on the Polynomial Hierarchy PH CSCI 6114 Fall 2021

Joshua A. Grochow

September 2, 2021

Definition 1. We use \exists^p, \forall^p to denote the polynomially-bounded version of these quantifiers.

For example, we can (re)define NP as the class of languages L such that there is a polynomial-time verifier V, and for all x,

 $x \in L \iff (\exists^p y)[V(x, y) = 1]$ $\iff (\exists y)[|y| \le \operatorname{poly}(|x|) \text{ and } V(x, y) = 1]$

Definition 2. 1. A language L is in $\Sigma_k \mathsf{P}$ $(k \ge 0)$ if there is a polynomial-time verifier V such that, for all x,

$$x \in L \iff (\exists^p y_1)(\forall^p y_2) \cdots (\exists^p / \forall^p y_k) V(x, y_1, y_2, \dots, y_k) = 1.$$

where the final quantifier is \exists^p if k is odd and \forall^p if k is even.

- 2. We similarly define $\Pi_{\mathsf{k}}\mathsf{P}$ except where the right-hand side starts with $\forall^p y_1$ (and then alternate).
- 3. Finally, we define $\mathsf{PH} = \bigcup_{k \ge 0} \Sigma_k \mathsf{P}$.

Exercises

- 1. Show that $P = \Sigma_0 P = \Pi_0 P$ and $NP = \Sigma_1 P$.
- 2. (a) Show that $\mathsf{PH} \subseteq \mathsf{EXP}$, where EXP is the class of decision problems that can be decided by a Turing machine that runs in time $2^{\operatorname{poly}(n)}$.

- (b) Show that $PH \subseteq PSPACE$, where PSPACE is the class of decision problems that can be decided by a Turing machine that uses an amount of *space* that is poly(n) (with no *a priori* upper bound on its runtime).
- 3. Show that $\Sigma_k \mathsf{P} = \mathsf{co} \Pi_k \mathsf{P}$. That is, $L \in \Sigma_k \mathsf{P}$ iff $\overline{L} \in \Pi_k \mathsf{P}$ (\overline{L} is our notation for the complement language, $\overline{L} := \Sigma^* \setminus L = \{x \in \Sigma^* | x \notin L\}$). If this feels too abstract, start with k = 1.
- 4. Is NP = coNP? This is a hard problem. Try to convince each other one way or the other.
- 5. Show that $\Sigma_k P \subseteq \Sigma_{k+1} P \cap \Pi_{k+1} P$. Conclude that (a) $\Sigma_k P \cup \Pi_k P \subseteq \Sigma_{k+1} P \cap \Pi_{k+1} P$, (b) $PH = \bigcup_{k>0} \Pi_k P$.
- (a) Show that a language L is in NP iff there exists a poly-time verifier V such that for all x,

$$x \in L \iff (\exists^p y_1)(\exists^p y_2)V(x, y_1, y_2) = 1.$$

(b) Show that it is only the number of quantifier alternations that matter, and not the total number of quantifiers in the definition of $\Sigma_k P$. More specifically, if in the definition of $\Sigma_k P$ we allow a block of \exists^p quantifier or a block of \forall^p quantifiers in place of any one of the \exists^p/\forall^p quantifiers in the definition above, we get back the same class.

Definition 3. If $PH = \Sigma_k P$ for some fixed k, we say that PH *collapses* (to the k-th level), and otherwise that PH is *infinite*. (Note the latter is a slight abuse of terminology since PH always contains infinitely many langauges.)

- 7. (a) Show that if there exists $k \ge 0$ such that $\Sigma_k \mathsf{P} = \Pi_k \mathsf{P}$ then $\mathsf{PH} = \Sigma_k \mathsf{P}$. *Hint:* Use the previous problem.
 - (b) Show that if there exists a $k \ge 0$ such that $\Sigma_k \mathsf{P} = \Sigma_{k+1} \mathsf{P}$, then $\mathsf{P}\mathsf{H} = \Sigma_k \mathsf{P}$.
 - (c) Show that if PH has a complete problem, then PH collapses.
- 8. We define the decision problem $\Sigma_k CIRCUIT$ -SAT as follows:

 Σ_k CIRCUIT-SAT

Input: A Boolean circuit $\varphi(x_1, \ldots, x_m)$, together with a partition of $\{1, \ldots, m\}$ into k subsets S_1, \ldots, S_k . Decide: It is the case that $\exists \vec{y} \forall \vec{z} \cdots (\exists / \forall \vec{w}) \varphi(\vec{y}, \vec{z}, \ldots, \vec{w}) = 1$, where $\vec{y} = \vec{x}|_{S_1}, \vec{z} = \vec{x}|_{S_2}, \ldots, \vec{w} = \vec{x}|_{S_k}$, and the final quantifier is \exists if k is odd and \forall if k is even.

Note 1: these are not " \exists^{p} "-style quantifiers, and that each vector $\vec{y}, \vec{z}, \ldots, \vec{w}$ is a vector of Boolean variables. The decision problem is to decide whether the quantified mathematical statement is true or false (note: the question is *not* satisfiable vs unsatisfiable, since all variables are quantified, but literally a true statement or a false statement).

Note 2: CIRCUIT-SAT is the same as $\Sigma_1 CIRCUIT$ -SAT. (That is, satisfiable unquantified circuits are in essence the same as true statements that are \exists -quantified circuits.)

Question. Show that for any $k \geq 1$, $\Sigma_k CIRCUIT$ -SAT is $\Sigma_k P$ -complete. (It's also true for k = 0, but for somewhat trivial reasons.) *Hint:* Use the idea of the proof that $P \subseteq P/poly$ from the first set of exercises.

(Foreshadowing: when we get to PSPACE, we will see that a related problem, Totally Quantified Boolean Formulas, or TQBF, is PSPACEcomplete. TQBF is just like $\Sigma_k CIRCUIT$ -SAT except that there is no limit placed on how many quantifier alternations there can be.)

Resources

- Defined in Stockmeyer, Theoret. Comp. Sci., 1976
- Arora & Barak Ch. 5
- Du & Ko Ch. 3
- Schöning & Pruim, Gems of TCS, Ch. 16
- Hemaspaandra & Ogihara, Complexity Theory Companion, Appendix A.4.1
- Homer & Selman §7.4 do PH in terms of oracles; we'll see that characterization later, so I'm including it here for future reference, but we haven't gotten to it yet.